Minneapolis: How do we partition a city into sub-systems?

By Matt Johnson

So far we’ve established the (3) systems’ axioms; we’ve touched on the notion of systems’ boundaries by using examples of cities; and we’ve established what a system’s behavior is by analyzing the labor force, average weekly wages, and unemployment rate of Minneapolis. Today, we are going to begin to partition the Minneapolis system into its respective subsystems and we are going to do it by ward.

In the next blog, we will decompose Minneapolis by zip-code. And in a future article, we will decompose Minneapolis’ wards into their respective subsystems – neighborhoods – which will introduce us to the notion of systems’ levels.

Minneapolis is a city with 413,651 residents as of July 1, 2016 according to the U.S. Census Bureau. Furthermore, those 413,651 residents obviously live in different parts of the city. Those parts of the city are called wards and Minneapolis has 13 Wards. According to Minneapolis City Government data, each ward contains about 32,000 residents, which of course varies every few years.

This means that each ward in Minneapolis contains about 32,000 residents; those residents interact with each other; and each ward has a function, which in this case is to provide political opportunity in voting and representation, and allocation of resources.

Thus, we have just shown that all 13 wards in Minneapolis satisfy the (3) systems’ axioms:

  1. A system consists of a set of elements.
  2. Elements in a system interact.
  3. A system has a function, or purpose.

Besides illustrating that these 13 wards are systems, we have also established that these wards are themselves subsystems of the general system of Minneapolis. This is because we have shown they satisfy the systems’ axioms, they are contained within Minneapolis, and they have established boundaries, i.e., political boundaries.

And this is a great place for us to dig a little deeper into the notion of boundary. Boundaries can be fuzzy or concrete; and boundaries can be regular or irregular. In the case of political boundaries, which are the wards we are observing, they are concrete and irregular. If we look at any of the 13 wards in Minneapolis, we can observe that the boundaries of the wards are well-defined, i.e., concrete. And we know this is because of the Minneapolis City Charter. But we can also observe that these boundaries are irregular. That is, they are not squares, rectangles, triangles, or circles.

In this short blog, we established that these 13 wards are subsystems of Minneapolis. We also established, with the help of the map, that the boundaries of these wards are concrete and irregular. As we keep moving forward, we will see that our new-found knowledge of systems will pay dividends when we begin to compare and contrast the different wards, neighborhoods, zip-codes, and other Minneapolis subsystems. And we will do this by adding a new tool to our systems’ took-kit – systems dynamics.

Let us now, as we have done before, attempt to disprove our systems’ notions and work in the tradition of natural philosophy until the next blog.

 

Matt Johnson is a blogger/writer for The Systems Scientist and the Urban Dynamics blog. He has also contributed to the Iowa State Daily and Our Black News. Matt has a Bachelor of Science in Systems Science, with focuses in applied mathematics and economic systems, from Iowa State University. 

You can connect with him directly in the comments section, and follow him on Facebook

You can also follow The Systems Scientist on Twitter or Facebook.

 

Photo Credit: The Systems Scientist

 

 

 

 

 

Copyright ©2017 – The Systems Scientist

 

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s