Tag: Chicago Data

Chicagoland: 2017 Homicides through June, Update!

In a previous article Chicagoland: Systems Axioms, Boundaries, and 2017 Homicides through June this blog reported the total number of homicides for the first 6 months of 2017 was 329. This total was taken from the most current data provided by the Chicago Tribune.

However, these numbers do change from time to time. According to the most current Chicago Tribune data, the total number of homicides through 2017 now stands at 333. This means that 2017 homicide data is now on pace with 2016 homicide data: 333 homicides in 2016 through June and 333 homicides in 2017 through June.

Graph 1

We’ve built a system’s foundation over the past few articles. We’ve established the (3) systems’ axioms, we’ve provided examples of systems’ boundaries, and we’ve illustrated systems’ behaviors; and now we can these axioms and notions to provide a greater understanding of what the homicide data is telling us.

We know Chicago is a system with boundaries and behaviors. If we differentiate 2016 from 2017, we can identify similarities and differences in Chicago’s homicide behavior; that is, how a system’s performance changes over time. In this case, we mean the lower the number of homicides, the better the performance of this system.

Why is this the case? This is because economic utility is inversely proportional to crime and therefore homicides. In other words, as crime increases, economic utility decreases, and as crime decreases, economic utility increases. However, it should be noted that there are exceptions to this rule, for example, Downtown Minneapolis.

By observing the data in Graph 1, we can see that there aren’t many significant differences between 2016 data and 2017 data. Of course, there are months in 2016 that contain a greater number of homicides than there are months in 2017 and visa versa.

For example, there were more homicides in January, March, and May of 2016 than in those same months in 2017. In contrast, there were more homicides in February, April, and June of this year than those same months in 2016.

The greatest difference between the two years has been the months of May and June. For instance, there were 12 more homicides in May of 2016, 68 in total or approximately 17.5 percent, than in May of 2017. In comparison, there were 11 more homicides in June of 2017, 84 in total or approximately 15 percent, than in June of 2016. But overall, the behavior of the Chicago system of 2017 has been similar to the behavior of the Chicago system of 2016.

Either way, this system’s behavior is going to continue to depress economic utility in some parts of Chicago where these homicides are concentrated. And as the readers of this blog now, homicide distribution is not equal throughout Chicago.

This is because the neighborhoods of Austin, Englewood, Garfield Park, and North Lawndale to name a few continue to experience high numbers of homicides and high numbers of crime in general year after year. In contrast, the neighborhoods of Edison Park, North Park, Forest Glen, and Hegewisch to name a few do not experience such adverse systems’ variables, and of course this is good.

But how can adverse systems’ variables be addressed either by economic and public policy or by market solutions in these depressed subsystems of Chicago? Or perhaps these systems’ challenges could be addressed with a combination of government and marketplace solutions in these depressed subsystems of Chicago?

Let us now, as we have done before, attempt to disprove our notions and work in the tradition of natural philosophy until the next blog.


Matt Johnson is a blogger/writer for The Systems Scientist and the Urban Dynamics blog. He has also contributed to the Iowa State Daily and Our Black News. Matt has a Bachelor of Science in Systems Science, with focuses in applied mathematics and economic systems, from Iowa State University. 

You can connect with him directly in the comments section, and follow him on Facebook

You can also follow The Systems Scientist on Twitter or Facebook.


Photo Credit: Pixabay






Copyright ©2017 – The Systems Scientist

Chicagoland: 2017 Homicide totals so far

TSS Admin

Nothing brings visitors and views to mainstream media websites quite like homicides in the windy city. When homicides are up, mainstream visitor traffic is good.

But don’t expect to hear from the mainstream media anytime soon. This is because homicides are down from last year at this time. Yes! It’s true.

Normal Distribution, Wikimedia Commons

According to data compiled by the Chicago Tribune, there were 260 homicides through the month of May in 2016. That was up significantly from 2015. In contrast, there have been 235 homicides so far this year. For those keeping count, that’s a reduction of 9.6 percent from last year.

Hopefully, Memorial Day weekend will stay relatively quiet this year and homicides will remain at 235.

Of course, the warm summer months are always the busiest time for crime in general, including homicides. Historically this has been the trend, and this is exactly what the data sets are saying.

If the trends hold, then homicides in Chicago should follow a normal distribution, i.e., a bell-curve, although the 2016 distribution of homicides skewed left.

Skewed-left distribution, University of Florida

This means that roughly about 68 percent of the homicides should happen within the warm months of the summer, or one standard deviation from the mean as the normal distribution above illustrates.

Moreover, about 32 percent of the homicides should occur outside of the one standard deviation, or outside the warmer months.

Does this mean the warm months of Chicago in 2017 will see more homicides than the warm months of Chicago in 2016? It does not.

So far, homicides are down from 2016 and if this trend continues throughout the summer months, then homicides should remain down. But the reader should keep in mind that homicides are very difficult to predict.

The only reason it is being suggested that homicides may trend below last year is because homicides are down. If they were up, then the prediction would be the opposite. Of course, this method is an archaic form of bayesian statistics, so take it with a grain of salt.

What do you think? Do you think homicides will remain lower than last year? Or do you think homicides will explode over the summer months? Either way, please provide your reasons and explanations below.


You can also follow The Systems Scientist on Twitter or Facebook

Photo credit: Northwestern University






Copyright ©2017 – The Systems Scientist